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Summary

This paper demonstrates the potential of wavelet analysis to investigate fine-scale spatial variation in soil
without statistical assumptions that are generally implausible. We analysed the optical densities of different
forms of carbon which were measured at intervals of 50 nm along a 16-μm transect on a soil micro-aggregate
using near-edge X-ray fine-structure spectroscopy (NEXAFS). We found different patterns of scale-dependent
variation between the carbon forms, which could be represented by pair-wise wavelet correlations at the
different scales, and by principal components analysis of all the correlations at each scale. These results
represent only one small soil micro-aggregate and are not presented as general findings about soil carbon, but
they do indicate that fine-scale variation of soil carbon can be complex in ways that the wavelet analysis can
accommodate but alternative spatial statistics such as variograms cannot. Among the patterns of variation that
the analysis could identify were scale-dependent correlations of the different forms of carbon. In some cases,
positive correlations were found at coarser scales and negative at the finest scales, suggesting a multi-scale
pattern in which contrasting forms of carbon are deposited in common clumps but at finer scales either one or
the other form dominates. Aromatic and carboxylic carbon varied jointly in this way. Other forms of carbon,
such as carboxylic and aliphatic carbon, were strongly correlated at the finest scales but not the coarser scales.
We found evidence for changes in the variance and correlation of forms of carbon along the transect, indicating
that the spatial distribution of carbon at these fine scales may be very complex in ways that are inconsistent with
the assumptions of geostatistics. This quantitative analysis of the spatial patterns of different soil components
at micro-scales offers a basis for formulating and testing specific hypotheses on replicated samples.

Introduction

Micro-scale soil studies, methods and motivation

There is a growing interest in methods to examine the structure
and composition of soil at nanometre- to micrometre-scale.
These methods include X-ray microtomography to investigate
soil physical structure (Feeney et al., 2006), and methods
to study the chemical composition of the soil including X-
ray fluorescence (XRF, Isaure et al., 2005), energy-dispersive
spectroscopy (EDS, Coppin et al., 2009), secondary ion mass
spectroscopy (SIMS, De Rito et al., 2005) and near-edge X-ray
fine-structure spectroscopy combined with scanning transmission
X-ray microscopy (NEXAFS-STXM, Lehmann et al., 2008). We
refer to these and similar technologies collectively as micro-scale
methods.
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Young & Crawford (2004) argued that micro-scale methods
probe the structure and composition of soil at spatial scales which
are fundamental to soil functions, at least in so far as those
functions depend on microbial processes. Some soil scientists
have queried whether this is generally true. Fierer et al. (2009)
argued that, for many geochemical functions of soil, the aggregate
effects of processes over a heterogeneous assembly of micro-
sites may be predictable without the need to measure the fine-
scale variation. However, Jacobson et al. (2007) presented a
case where the effects of a soil property on functions could not
be understood without observing the fine-scale variation. They
noted that apparent threshold concentrations of copper (measured
on cores), above which microbial numbers and metabolism are
affected in soil, are not consistent, varying from 5 to over 1000 mg
kg−1. They mapped the concentration of copper in a vineyard soil
from Burgundy at resolutions of 0.3 mm and 20 μm using electron
microprobes and synchrotron XRF spectroscopy. This showed that
the distribution of copper was very patchy and therefore, while the
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overall concentration was large (417 mg kg−1), micro-organisms
would be exposed to very small concentrations in most of the soil
volume.

The proposition that variation of soil structure and composition
at fine scales must be understood if soil functions are to be
predicted is therefore a general hypothesis that has been validated
in some examples, and must be tested for other soil conditions
and functions. As noted above, there are many measurement
technologies to facilitate such studies. However, methods to
analyse the resulting data, have received rather less attention.
Process models have been used to analyse micro-scale data for
specific purposes. A model of the soil as solid and voids can be
used directly in Lattice–Boltzmann models to predict hydraulic
properties by simulating fluid flows through the structure (Zhang
et al., 2005). Simple visualization of micro-scale soil data provides
insight. Lehmann et al. (2008) published images that showed
the spatial variation of the optical density of different forms of
carbon in a soil micro-aggregate, and used cluster analysis on these
data to highlight contrasting regions. By visual interpretation they
could conclude that forms of carbon characteristic of microbes
were found along pores, and that organic matter dominated
by black carbon was clumped in particulates. However, visual
interpretation did not allow them to express these conclusions
in a quantitative way, which might provide a basis to compare
variation between contrasting soils, or to identify scale-dependent
associations between different forms of carbon quantitatively. This
requires appropriate statistical methods.

The objective of this paper is to illustrate how methods for
spatial analysis which have been applied to conventional soil
data sets measured on cores at field scale or coarser can be
used to identify hypothesized general patterns of scale-dependent
variation and co-variation of soil properties at micro-scales, and
so to generate more specific hypotheses about soil composition.

Micro-scale soil studies, spatial analysis of data

A measurement of a soil property corresponds to a finite volume
of soil material. This volume of soil material (defined with respect
to depth, shape and dimensions) is known as the support of the
data. Consider a set of measurements on some support made on
a regular sample array such as a grid or transect at intervals
length x0. The variations in these data occur at different scales.
Components of the variation at different scales may be caused
by different factors of soil formation. Micro-topography imposes
variations over scales of a few tens of metres, differences between
land-uses cause variations over a few hundred metres (field to
field) and parent material differences cause variation at scales
of a few kilometres. There are three general questions which
soil scientists might ask about soil variation. These apply to
micro-scale observations as well as to observations at field or
landscape scale, and are as follows:

(i) At what dominant spatial scales does a soil property vary? It is
useful to study how soil variation is partitioned between scales

since this may indicate the relative importance of different
factors of formation, and its implications for particular
processes. Soil variation is commonly scale-dependent in
the sense that distinct contributions to variation, of differing
magnitude, occur at diverse scales and so the variation of
a soil property depends on the support of the measurements
and the extent of the sampled region. If there was no scale
dependence over some scale interval (e.g. pore to core) then
variation in this interval is effectively white noise.

(ii) At what spatial scales do two or more soil properties co-vary?
Two soil variables might be influenced by common factors, in
addition to particular factors specific to just one of them. It is
therefore often found that the overall correlation between two
soil properties masks underlying scale-dependent correlations.

(iii) Is the variation and co-variation of properties consistent
across a region? The variation of a soil property, and its
correlation with other properties, is not necessarily uniform.
The dominant scales of variation and the overall variability
of a soil property may change in space as different limiting
or dominant factors come into play.

All three of these questions must be asked of soil variables
measured at micro-scales. The central hypothesis of micro-scale
research is that the behaviour of the soil at the support of the
core must be explained by its variation at finer scales. This was
exemplified by Jacobson et al. (2007), cited above. In terms of
spatial analysis, we can say that the key feature of variation
of copper concentration at within-core scales is the pronounced
scale dependence. If there were no scale dependence within the
core, then the existence of refugia for the microbiota, where
key functions are not affected by copper, would be precluded.
Similarly, strong correlation between concentrations of two metals
in soil at a particular scale indicate a common factor in their
distribution such as joint deposition on mineral surfaces or
adsorption by particulate organic matter. It might also be expected
that the variation or co-variation of soil properties at micro-
scales is not uniform, and might change from the centre to the
edge of micro-aggregates, or with increasing distance from the
rhizosphere.

Attempts have been made to characterize the scale-dependent
variation of micro-scale data sets by computing their variograms.
Feeney et al. (2006) computed variograms of X-ray tomographic
data to characterize soil structure and Nunan et al. (2006) used
them to draw inferences about impacts of particular treatments on
structure. Geostatistical methods have also been used to describe
the spatial distribution of microbial colonies identified in images
of soil thin sections (Nunan et al., 2003). However, the variogram
is used in geostatistics primarily to model the spatial covariance
structure of a variable and predict it at unsampled sites. It is a
blunt instrument for description of complex spatial variation as
explained and illustrated by Lark (2010). This might account for
the finding of Nunan et al. (2006) that the variograms of porosity
in soils at micro-scales under strongly contrasting treatments were
rather similar.
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Furthermore, the computation of the variogram requires a
stationarity assumption, such that the variance of the difference
between two locations depends only on their separation in
space, and not on their location. This assumption prejudges the
third general question about spatial variation identified above.
When we use variograms it is required that the variation does
not change systematically across the region of interest. For
this reason, Lark & Webster (1999) proposed that the wavelet
transform is used for spatial analysis of soil variables, so as
to provide quantitative information on scale-dependent spatial
variation without relying on any implausible assumptions of
stationarity. We therefore propose that wavelet transforms are most
appropriate for addressing questions about micro-scale data.

The scope of this paper is as follows. We present a case study,
the analysis of the NEXAFS-STXM data on forms of carbon in
a soil micro-aggregate from Kenya first published by Lehmann
et al. (2008). We recognize that this analysis does not allow
generalizations beyond the micro-aggregate in question about the
spatial distribution of soil carbon. Our aim rather is to show how
wavelet analysis allows us to test general hypotheses about soil
variation at micro-scale, framed in the terms introduced above,
and to generate from the analysis more specific hypotheses about
spatial variation which can then be tested given the information
on scale dependence that the analysis has provided.

Methods

Data

The data that we use, from a soil in Nandi Forest, western Kenya,
were first published by Lehmann et al. (2008), who presented
the technical details. The basic data were measurements, on
a sectioned micro-aggregate of approximately 30 × 40 μm, of
transmitted X-ray intensity over increments of ionization energy,
for pixels of length 50 nm. Characteristic ratios of intensity at
different energies were computed. These correspond to the optical
density of the soil with respect to total carbon content and the
separate contents of aromatic, phenolic, aliphatic and carboxyl
forms of carbon. Because the most powerful inferences based on
the wavelet transform are restricted to one dimension, we extracted
four transects from the image for more detailed analysis. Since all
the transects yielded similar results, we focus on a single example
in this paper. Figure 1 shows optical densities for the different
forms of carbon along the transect.

Hypothesized patterns of spatial variation and co-variation
for forms of carbon

We hypothesize five general patterns of spatial variation and co-
variation which might be expected for forms of soil carbon at
micro-scales and then use the wavelet analyses to identify these
in the data. The optical density for a particular form of soil carbon
recorded for a pixel depends on the composition of the soil carbon
in the corresponding part of the sectioned micro-aggregate. This
carbon might be derived from various sources such as detritus
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Figure 1 Optical densities for four forms of carbon on a 16-μm transect.

(including more or less decomposed litter, dead roots, faecal mat-
ter from mesofauna), exudates, sloughed-off root material, black
carbon, known to be significant in the soil at Nandi (Nguyen et
al., 2008). Some of this material will have been altered in its
composition in situ, perhaps by microbial activity. As a result,
the forms of carbon at any particular site will be due to inher-
ited properties (such as characteristic components of black car-
bon) and local conditions for microbial or abiotic transformations.
The first hypothesized general pattern is concerned with scale-
dependent variation of the different forms of carbon. Hypotheti-
cal patterns (ii)–(iv) concern scale-dependent correlation between
the different forms of carbon. Finally, (v), we consider the
uniformity of spatial variability from one part of the soil to
another.

(i) Any form of carbon in the soil will show scale-dependent
spatial variation at micro-scales because the distribution in
space of the carbon at these scales will reflect the ‘clumped’
distribution of its sources and the variation at different scales
of conditions for biotic and abiotic transformations of carbon
which are controlled, in part, by the physical structure of the
soil.

(ii) At the coarsest spatial scales within a micro-aggregate, we
expect the different forms of carbon to show positively
correlated patterns of variation. This might reflect the
existence of ‘organic-rich’ patches which contrast with
voids, large mineral grains or clusters of flocculated clay.
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(iii) At intermediate scales some of the forms of carbon will show
positively correlated spatial variations because they tend to
be inherited jointly from a particular source (e.g. a fragment
of black carbon).

(iv) At the finest scales we expect negative correlations between
forms of carbon if the spatial resolution is sufficiently fine
that the region corresponding to a particular pixel is, usually,
dominated by a single form.

(v) The strength of the correlations or the particular patterns of
scale-dependent correlation hypothesized above (particularly
under (ii) and (iii)) might change from one part of the soil
to another because of variations in soil architecture (such as
the distribution of pore volumes) or the dominant sources of
organic matter. Similarly the scale-dependent variance might
change in space.

The identification, or otherwise, of these hypothesized patterns
and their association with specific spatial scales by an appropriate
spatial analysis would show the potential of wavelet analysis to
address more specific questions about the micro-scale distribution
of soil carbon which are relevant to the prediction of soil functions
(e.g. are more recalcitrant and labile forms of carbon found
together, or in contrasting patches?) and to understanding its
origins and development.

Wavelet analyses

For spatial analysis, we use the maximal overlap discrete wavelet
transform (MODWT) proposed by Percival & Guttorp (1994) and
analyses described by Percival & Walden (2000) and Lark &
Webster (2001). Lark & Webster (1999, 2001) give a general
introduction to wavelet transforms. In summary, in a wavelet
transform we partition the variation of a signal into additive
components that correspond to different intervals of spatial scale
from fine (short-range) to coarse (long-range). The particular
advantage of wavelet transforms over others that achieve a
comparable analysis (such as the Fourier transform) is that the
wavelet transform produces a set of local coefficients for each
scale so that if the variability of the signal at some scale is
not uniform (such as from the centre towards the edge of a
micro-aggregate) or shows local intermittent features (such as
near the edges of pores) then this can be identified. The wavelet
analyses described below therefore allow us to study the scale
dependence of the variation and co-variation of the different
forms of carbon on the transect and to look for changes in the
variability along the transect. They therefore allow us to test all
five hypotheses.

Wavelet scales. The finest scale interval that we can study in
data from a transect with measurements at intervals x0 has a lower
bound of 2x0 (corresponding to the Nyquist frequency 1/2x0). The
scales in a wavelet transform are labelled with the lower bound,
in the MODWT the successive scales are 21x0, 22x0, 23x0, . . .,
so in the study reported here where x0 = 50 nm, the MODWT

represents the data by sets of coefficients with scale labels 0.1
(which by the convention refers to the scale interval 0.1–0.2 μm),
0.2, 0.4, 0.8, 1.6, 3.2 and >6.4 μm. The first six of these scales
are ‘detail’ coefficients, extracted from the signal by successive
dilations of a high-pass wavelet filter, and the seventh is a ‘scaling’
coefficient, which represents the filtered version of the signal when
all the details are subtracted.

Wavelet coefficients, variances and co-variances. Let us denote
the ith MODWT coefficient of variable u along a one-dimensional
transect at scale 2j x0 by du

i,j . This coefficient is obtained by
multiplying the elements of the j th dilation of the basic wavelet
filter, translated to location i, with the corresponding values in the
signal and summing the products. Because a wavelet has ‘compact
support’, which means that it tends rapidly to zero away from
location i, the resulting coefficient responds only to local variation.
This wavelet coefficient therefore represents the local variation of
the data at a particular scale interval. Because of the properties
of the basic wavelet function (see Lark & Webster, 1999) the
wavelet coefficients at scale j can be back-transformed to yield a
scale-specific ‘detail’ component of the original data. If we have
N data where 2k ≤ N < 2k+1 then we can compute k − 1 such
detail components and a residual ‘smooth’ component. The set of
detail components for scales j = 1, 2, . . . , k − 1 along with the
‘smooth’ component comprise a multi-resolution analysis (MRA)
of the data into components of different scale which, if summed,
reconstitute the original data.

We may estimate a scale-specific component of the variance of
our data on variable u, the wavelet variance σ 2

u,j , from the Nj

wavelet coefficients at this scale. The wavelet variance therefore
indicates how much of the variation of the variable of interest
is associated with the particular scale interval. The estimator is
given by Percival (1995)

σ̂ 2
u,j = 1

Nj 2j

Nj∑
i=1

(
du

i,j

)2
. (1)

In geostatistical analysis, we assume that the variance of a soil
property is uniform in space, but this is not generally plausible.
However, since wavelet coefficients describe local variation, it
is possible that a wavelet analysis need not make this same
assumption. Whitcher et al. (2000) proposed a procedure to
identify changes in the wavelet variance components on a one-
dimensional signal and Lark & Webster (2001) applied this
procedure to data on soil. Lark (2006) presents a somewhat refined
version of the procedure, which we use here.

In similar fashion, when a MODWT has been performed on two
variables u and v, we may estimate the scale-specific component
of the covariance, the wavelet covariance C

u,v
j ,

Ĉ
u,v
j = 1

Nj 2j

Nj∑
i=1

du
i,j d

v
i,j . (2)
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As with a conventional covariance, the interpretation is easier
on standardization to a correlation in the interval [−1, 1], so the
wavelet correlation for the j th scale is estimated by

ρ̂
u,v
j = Ĉ

u,v
j√

σ̂ 2
u,j σ̂

2
v,j

. (3)

This measures the strength of the linear relationship between the
components of variation of the two variables associated with the
specific scale. As shown by Lark & Webster (2001) and Lark
et al. (2004), the wavelet correlation often reveals relationships
between variables at some scales that are obscured in the overall
correlation over all scales.

As with the wavelet variance we may identify locations in
space at which the wavelet correlation at some scale changes
significantly. Lark et al. (2004) describe how this is done, in
summary we search for candidate change points in the wavelet
covariance, and then apply an appropriate test to the difference
between the wavelet correlations either side of the change point.
This is potentially interesting in the analysis of soil data, since
changes in the correlation between variables across a region, of
any size, may indicate changes in the dominant factors that drive
some soil process as Lark et al. (2004) exemplify in a study at
landscape scale.

We may define Rj as the wavelet correlation matrix for a set
of variables at scale 2j x0, such that

[
Rj

]
u,v

= ρ
u,v
j . (4)

In this study, we computed MRAs for the optical densities on
our transect across the micro-aggregate, associated with aromatic,
aliphatic, phenolic and carboxylic carbon. We computed wavelet
variances, co-variances and correlations, and undertook tests to
identify change points in the variance and correlations following
Lark et al. (2004), where it is also explained how confidence
intervals may be computed for the wavelet correlations. We then
computed the principal components of the wavelet correlation
matrices for the forms of carbon for scales 0.1 to 3.2 μm. Principal
components analysis is widely used in soil science to summarize
the variation of a set of variables by identifying uncorrelated
linear combinations of those variables (principal components)
which account for as much as possible of the overall variation
of the original data set. Webster (2001) shows how a plot of the
correlation of each variable with the principal components allows
one quickly to visualize the similarity or contrast between the
spatial patterns for the forms of carbon at each scale, and we
did that here. We also computed principal components for the
four corresponding smooth components from the multi-resolution
analysis to summarize the joint variation of the forms of carbon
at scales >6.4 μm.

Note that any wavelet transform requires a procedure to
generate coefficients near the start and end of the signal where
the filter overlaps the edges. Here we used a standard procedure
of ‘reflecting’ the signal at the ends, and we followed Milne et al.

(2009) to remove those coefficients that would bias estimates of
the variance and covariance associated with the particular scales.

Results

Figure 2 shows the MRAs for the different forms of carbon. Each
stacked line corresponds to the variations of the optical density
for a particular form of carbon which corresponds to a scale of
the wavelet transform, with the finest scale at the bottom and the
smooth component that corresponds to the coarsest scale at the top.
The stacked lines are separated for clarity so there is no vertical
scale on the graphs, but in each case a vertical grey bar is shown
which indicates the magnitude of the vertical variations in units of
optical density. If the components are added together they result in
the original data. For all forms of carbon there is a general increase
in optical density along the transect, which is most pronounced
in the case of the carboxyl carbon. These trends are shown in the
smooth components which are the top line in each of the multi-
resolution analyses in Figure 2. The detail components at finer
scales all have a mean of zero, and illustrate fluctuations about
the trend at these different scales.

Figure 3 shows the corresponding wavelet variances. All forms
of carbon show scale dependence on this transect and the wavelet
variance increases with scale for most forms of carbon. The scale
dependence is least marked for the aromatic carbon which shows
a distinct peak at the 0.2-μm scale, but it also has its largest
component of variance at the coarsest scale detail component
(3.2 μm). The multi-resolution analysis in Figure 2 shows that
this variation is associated with two peaks in optical density
about 8 and 13 μm along the transect respectively. The carboxylic
carbon shows a more typical scale dependence with the wavelet
variance increasing with scale. The smooth component shows a
peak in optical density near 8 μm along the transect, and there
are associated fluctuations in the density at the 3.2- and 1.6-μm
scales. In short, all forms of carbon show a pronounced scale
dependence in their spatial variation on this transect, with sources
of variation at all the scales considered. This is consistent with our
general hypothesis (i) in which the spatial variation of soil carbon
has its origins in clumped distribution of the initial organic inputs
to the soil and scale-dependent variation in the factors that affect
subsequent transformations of the material.

The locations at which significant changes in the wavelet
variance were found are shown as vertical black bars on the MRA
figures (Figure 2). Note that the variance of each form of carbon
changed at one or more spatial scales. In the case of aromatic
carbon there is a significant reduction in the variance at the finest
scale (0.1 μm) at about 6 μm along the transect. Otherwise the
variation of this form of carbon appears to be homogeneous.
The variance of aliphatic carbon is spatially uniform, except for
scales 0.4 and 0.8 μm where there is an increase in variance near
8.5 μm on the transect, due largely to the large fluctuations in
these scales near the peak in the overall trend. Similarly, carboxyl
carbon shows a significant increase in variance at the 0.8-μm
scale near the pronounced increase in the overall trend of optical
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Figure 2 The MRA of optical densities of (a) aromatic carbon (b) aliphatic carbon (c) carboxylic carbon and (d) phenolic carbon. Significant changes in
variation are shown by the black vertical lines on the MRA components. The thick grey vertical line represents 0.2 optical density units. Each component
is labelled by the lower bound of the corresponding scale interval.

density, and there are two regions of elevated variance at the 0.4-
μm scale in this region where the mean density of the carboxyl
carbon is larger. There is similarly an increase in the variance
of phenolic carbon at the 0.8-μm scale at 6 μm on the transect,
and there is a peak in the smooth component near 10 μm on the
transect where the larger fluctuations are seen. However, there is a
marked reduction in the variance of the 0.2-μm scale component
at 6 μm on the transect. This non-uniformity of the variance in
forms of carbon at different scales confirms our hypothesis (v)
with respect to the variances of single variables. This indicates

why the variogram of these variables would not fully account for
their spatial variation.

Figure 4 shows the pair-wise correlations by scale among the
forms of carbon, and Figure 5 represents the principal components
analysis of the wavelet correlation matrices and the correlation
matrix of the smooth components. The plot in Figure 5 for the
smooth component (scales larger than 6.4 μm) shows that these
components are clustered together and all strongly correlated
with the first principal component. This indicates that the smooth
components show a similar spatial pattern at the coarsest scale,
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Figure 3 Standardized wavelet variances (wavelet variance / total wavelet variance) by scale for four forms of carbon, with 95% confidence intervals
shown by dotted lines: (a) aromatic carbon; (b) aliphatic carbon; (c) carboxylic carbon; (d) phenolic carbon.

which is consistent with our hypothesis (ii), that at coarser scales
the soil tends to be locally enriched in all forms of carbon or to
have small concentrations of all forms of carbon. This implies
that, at least for this micro-aggregate, processes that cause spatial
differentiation of the forms of carbon operate at scales finer than
6.4 μm and cannot be understood unless we observe the soil at
these scales. At the finer scales there are more complex patterns
of variation. Notably the four forms are all furthest apart from
each other in the plot in Figure 5 for the finest scale, 0.1 μm.
This shows that the components at this scale are rather weakly
correlated with each other. The plots show that aliphatic and
phenolic carbon are closely related to one another across the
scales, although this begins to break down at finer scales. At the
two coarsest scales (3.2–6.4, and >6.4 μm) carboxyl carbon is
most closely related to aromatic carbon but at finer scales it is
more closely related to aliphatic and phenolic carbon. Aromatic
carbon is distinctly different from aliphatic and phenolic carbon,
always appearing in a different quadrant to these two groups in
the plots in Figure 5.

In summary, there are four general patterns of spatially-
dependent correlation among the forms of carbon:

(i) There are significant positive correlations at all scales, the
strongest at the coarsest scale (e.g. between aliphatic and
phenolic carbon), this is consistent with patterns (ii) and
(iii) hypothesized above.

(ii) There are weak (<0.5) but significant positive correlations
at fine scales, becoming weaker and non-significant as scale
increases (such as between carboxylic carbon and aliphatic/
phenolic carbon).

(iii) There are (significant) weak negative correlations at fine
scales, becoming (non-significant) more strongly negative
at coarser scales (such as between aromatic carbon and
aliphatic/phenolic). This suggests forms that are not gen-
erally found together, possibly because they develop under
contrasting conditions.

(iv) There are weak negative (significant) correlations at fine
scale and positive (some significant) correlations at coarse
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Figure 4 Wavelet correlations between the forms of carbon, with 95% confidence intervals shown by dotted lines: (a) aromatic and aliphatic carbon;
(b) aromatic and carboxylic carbon; (c) aromatic and phenolic carbon; (d) aliphatic and carboxylic carbon; (e) aliphatic and phenolic carbon; (f) carboxylic
and phenolic carbon.

scales (such as carboxylic and aromatic carbon). This
suggests that two forms of carbon may both be found
in large clusters (such as filling pores) but when these
clusters are examined closely particular forms of carbon are
locally dominant. This is consistent with the fourth pattern
hypothesized above.

These general patterns of pair-wise scale-dependent correlation
among the forms of carbon (Figure 4) and the overall pattern

revealed in the principal components analysis on all four forms
(Figure 5), exemplify the expected patterns of scale dependent
co-variation hypothesized earlier. There are clear scale dependen-
cies in the correlation among all the forms of carbon. The principal
components analysis for the smooth component of the MRA shows
that there are similar patterns of variation for all forms at the coars-
est scales, consistent with pattern (ii) and suggesting that there is
a general spatial pattern of enrichment in carbon content which
is common to all forms. We also see the hypothesized negative
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Figure 5 Correlations between the first two principal components of the
wavelet correlation matrices (scales 0.1–3.2 μm) and the corresponding
detail components for four forms of carbon. The unit circle shows the
space of permissible values. In the case of scale > 6.4 μm the principal
components were obtained from the smooth components of the MRA.

correlations between some forms at the finest scales (three out
of six of the pair-wise correlations in Figure 4). At intermedi-
ate scales we see the significant positive correlations between
particular forms of carbon proposed in pattern (iii), notably in
the correlations between aliphatic and carboxylic carbon, and car-
boxylic and phenolic carbon, suggesting common factors (original
organic material and processes, or both) controlling the distribu-
tion of these forms.

As is shown in Figure 6, there is a point about half way
along this transect where the correlations of carboxylic carbon
with phenolic and aromatic forms change at the 1.6 μm scale. In

0 2 4 6 8 10 12 14 16
Location from origin / μm

−0.57 0.7

0.52 −0.16

Carboxylic

Aromatic

Phenolic

Aromatic

Phenolic

Figure 6 The bottom three lines show stacked plots of the optical densities
of carboxylic, aromatic and phenolic carbon along the transect. The top
two straight lines illustrate the location of the significant change in wavelet
correlation at scale 1.6 μm between aromatic and carboxylic forms (top
line) and phenolic and carboxylic forms (second line). The values of
wavelet correlation are shown above each line. The dotted line indicates
where correlations were not significantly different from zero. The vertical
grey bar represents 0.5 optical density units for the three lower graphs.

the first part of this transect carboxylic and aromatic carbon are
significantly and positively correlated and in the second half they
are not correlated (overall the wavelet correlation of these two
forms at this scale is very close to zero). In the first part phenolic
and carboxylic carbon are not correlated but they are strongly
and significantly (positively) correlated in the second part. This
exemplifies co-variation of soil components at micro-scale which
is not consistent with assumptions of stationarity; analysis of such
data with cross-variograms would fail to identify important aspects
of their joint spatial variation.

Discussion

The wavelet analysis of these data on forms of carbon in a
single micro-aggregate has enabled us to make more specific and
quantified statements about the spatial distribution of carbon in
this micro-aggregate than the visual interpretation facilitated by
the analyses and figures presented by Lehmann et al. (2008).
Specifically, we have shown how all forms of carbon exhibit
scale-dependent variation along this transect. On the basis of these
results we might propose more specific hypotheses which could
be tested by applying the wavelet methodology demonstrated
here to a larger set of micro-aggregates. For example, the scale
dependence of the aromatic carbon is rather different to the other
forms. In the other carbon forms, there is an increase in wavelet
variance with scale, for aromatic carbon the finest scales (0.1 and
0.2 μm) are relatively more important than the 0.4–1.6 μm scale
but the largest components of variation us still seen at the coarsest
(3.2 μm) scale. One might propose the hypothesis that this
distinctive scale dependence is characteristic of aromatic forms of
carbon in soils such as this one which have relatively large inputs
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of black carbon. This could be tested by undertaking this wavelet
analysis on similar transects selected, according to appropriate
sampling schemes, on sectioned micro-aggregates sampled from
a range of soils with contrasting amounts of black carbon.

The forms of carbon on this transect also exhibited contrasting
patterns of scale-dependent correlation, which might be expected
to arise from common sources or related processes of transforma-
tion in the soil. For example, it has been observed in NEXAFS
spectra of cells in microbial biofilms (Lawrence et al., 2003) and
of isolated bacteria and fungi (Liang et al., 2006) that carboxylic
and aliphatic carbon forms are both characteristic of microbial
carbon. In this micro-aggregate, these forms of carbon are corre-
lated significantly but weakly at scales below 2 μm, that is scales
corresponding to the size of a typical soil bacterial cell (Guzev
& Zvyagintsev, 2003). We might therefore advance the specific
hypothesis that a strong correlation of these forms is an indicator
of microbial carbon, and test this in further studies on sections with
differing microbial biomass. Similarly, we observe that aromatic
carbon forms are typical of black carbon and lignin. Carboxylic
carbon is also found at the surface of micrometer-sized particles
of black carbon due to oxidation. This may explain why these two
carbon forms are positively correlated at the coarsest scales, but
show contrasting patterns of variation at finer scales. This specific
hypothesis could be tested by comparing the wavelet correlations
of these carbon forms on sections from soils with contrasting con-
tents of black carbon. Such hypotheses could not be tested without
the quantitative methods demonstrated in this paper.

The same approach might be used in future work to examine
hypotheses about the interaction of organic and mineral fractions
of the soil. There is evidence that carboxylic carbon is associated
with clay surfaces (Oades, 1988), and the hypothesis that such
interactions determine the distribution of carboxylic carbon at fine
scales could be tested by wavelet correlation of NEXAFS-derived
optical densities for mineral elements such as Fe, Al and Si in
addition to forms of carbon (Lehmann & Solomon, 2010).

The change in the correlation of carboxylic carbon with pheno-
lic and aromatic forms shown in Figure 6 is consistent with our
expectation that the spatial variation of soils at fine scales will not,
in general, be consistent with assumptions of stationarity. More
specific hypotheses of this form could be advanced. If organo-
mineral interactions are as important as proposed by Kleber et al.
(2007), then changes in correlation between forms of carbon might
be associated with transitions from void to mineral regions of the
soil which NEXAFS data on key mineral elements would show.

This paper has revealed the complexity of multi-scale co-
variation of forms of carbon at micro-scales in one section from
one micro-aggregate. It shows the potential of the approach, and
suggests that appropriate spatial analyses of such data might
help to explain the origins and properties of soil organic carbon.
However, there is clearly a substantial challenge if we are to
use information on soil variation at micro-scales to explain soil
behaviour at the plot, field or landscape scales at which practical
questions about management of soil carbon and its impact on
other environmental systems must be addressed. We propose that

the key to this problem is to develop suitable sampling schemes by
which the measurements on micro-scale-support can be analysed
over a range of scales from micro-aggregate to landscape. This
might be achieved by the combination of wavelet analyses from
multiple sets of sections to identify different patterns of micro-
scale variation in soil carbon at micro-aggregate scale, and then
to extend these to the coarser scales. Another approach would be to
use spatially nested sampling (Lark, 2005). This is a procedure to
estimate components of variance or covariance that are associated
with different spatial scales. Nested sampling could be undertaken
on sections that they were obtained by nested sampling from
micro-aggregates. These micro-aggregates could be selected by
spatially nested sampling from within sample cores. The cores
could be collected on a sampling scheme spatially nested on scales
up to the catchment or beyond. This would provide a basis for
a unified analysis of the variation of forms of carbon over the
scale range from landscape to nanometres. Using the extensions of
nested sampling and analysis proposed by Lark (2005), the scale-
dependent correlations that the current paper has demonstrated
could be analysed over the full scale range, and by following
Lark & Corstanje (2009) one could undertake such analyses
without assuming stationarity of the variance components. This
analysis would allow direct tests of some of the exemplar specific
hypotheses advanced in this discussion, allowing us, for example,
to compare the co-variation of particular carbon forms in soils
which have received contrasting inputs of black carbon.

Trumbore & Czimczik (2008) call for more process-level
insight into soil carbon and its fate. One key question is what
confers stability on soil organic carbon. Whether the answer
is pore-filling or organo-mineral interactions or both can be
addressed only by observing spatial organization at the sub-
micrometre scale (Lehmann et al., 2007). We have shown that this
organization can be characterized by wavelet analysis and would
caution against the use of geostatistical models of spatial variation
which require simpler assumptions about spatial variation.

Finally, we observe that NEXAFS technology can be used
to examine constituents of the soil other than carbon. We have
already referred to mineral components that might interact with
carbon, but the distribution of metals in soil, and their co-variation
with other components could contribute to our understanding
of the behaviour of key pollutants, as Jacobson et al. (2007)
illustrated. Wavelet analysis might be similarly useful to study
these variables. Indeed as we try to understand the joint variation
of larger numbers of variables the need for quantitative methods
such as those developed and demonstrated here will become more
pressing.

Conclusions

Wavelet analysis of micro-scale data on forms of carbon allowed
quantitative conclusions about their joint variation at different
scales which go beyond the previous visual interpretation of
Lehmann et al. (2008). In particular, the wavelet analysis allows
quantitative statements to be made about scale-dependent variation
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and identifies patterns of scale-dependent joint variation of
particular variables in the soil, again at specific and quantitatively
defined spatial scales. This is essential for further work if various
soils are to be compared rigorously. Our expectations of scale-
dependent variance and co-variances of the forms of carbon in
a micro-aggregate and evidence that this cannot be assumed
to reflect an underlying stationary process were confirmed. In
particular, we have noticed patterns of correlation consistent with
broad contrasts in the origins of soil carbon, local aggregations
of carbon with characteristic composition and forms of carbon
which show different distributions at fine scales (smaller than
microbial cells). While our particular results refer only to one
small micro-aggregate they show that the spatial co-variation of
forms of soil carbon at these scales exhibits a complexity which
cannot generally be accounted for by simple summary statistics or
the geostatistical methods that have been applied to other micro-
scale data sets. Wavelet analysis provides a basis to test hypotheses
about micro-scale soil variation in a rigorous way.
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289–312. Elsevier, Amsterdam.
Lehmann, J., Kinyangi, J. & Solomon, D. 2007. Organic matter stabiliza-

tion in soil micro-aggregates: implications from spatial heterogeneity of

organic carbon contents and carbon forms. Biogeochemistry, 85, 45–57.
Lehmann, J., Solomon, D., Kinyangi, J., Dathe, L., Wirick, S. & Jacobsen,

C. 2008. Spatial complexity of soil organic matter forms at nanometre
scales. Nature Geoscience, 1, 238–242.

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill,

B. et al. 2006. Black carbon increases cation exchange capacity in soils.
Soil Science Society of America Journal, 70, 1719–1730.

Milne, A.E., Macleod, C.J.A., Haygarth, P.M., Hawkins, J.M.B. & Lark,
R.M. 2009. The Wavelet Packet transform: a technique for investigating

temporal variation of river water solutes. Journal of Hydrology, 379,

1–19.
Nguyen, B., Lehmann, J., Kinyangi, J., Smernik, R., Riha, S.J. &

Engelhard, M.H. 2008. Long-term black carbon dynamics in cultivated
soil. Biogeochemistry, 89, 295–308.

Nunan, N., Wu, K.J., Young, I.M., Crawford, J.W. & Ritz, K. 2003. Spatial

distribution of bacterial communities and their relationships with the
micro-architecture of soil. FEMS Microbiology Ecology, 44, 203–215.

Nunan, N., Ritz, K., Rivers, M., Feeney, D.S. & Young, I.M. 2006.

Investigating microbial micro-habitat structure using X-ray computed
tomography. Geoderma, 133, 398–407.

© 2011 The Authors
Journal compilation © 2011 British Society of Soil Science, European Journal of Soil Science, 62, 617–628



628 A. E. Milne et al.

Oades, J.M. 1988. The retention of organic matter in soils. Biogeochem-

istry, 5, 35–70.
Percival, D.B. 1995. On estimation of the wavelet variance. Biometrika,

82, 619–631.
Percival, D.B. & Guttorp, P. 1994. Long-memory processes, the Allan

variance and wavelets. In: Wavelets in Geophysics (eds E. Foufoula-
Georgiou & P. Kumar), pp. 325–344. Academic Press, New York.

Percival, D.B. & Walden, A.T. 2000. Wavelet Methods for Time Series

Analysis. Cambridge University Press, Cambridge, UK.
Trumbore, S. & Czimczik, C. 2008. An uncertain future for soil carbon.

Science, 321, 1455–1456.

Webster, R. 2001. Statistics to support soil research and their presentation.
Journal of Soil Science, 52, 331–340.

Whitcher, B.J., Guttorp, P. & Percival, D.B. 2000. Multiscale detection and
location of multiple variance changes in the presence of long memory.
Journal of Statistical Computation and Simulation, 68, 65–88.

Young, I.M. & Crawford, J.W. 2004. Interactions and self-organization in
the soil–microbe complex. Science, 304, 1634–1637.

Zhang, X.X., Deeks, L.K., Bengough, A.G., Crawford, J.W. & Young,
I.M. 2005. Determination of soil hydraulic conductivity with the
lattice Boltzmann method and soil thin-section technique. Journal of

Hydrology, 306, 59–70.

© 2011 The Authors
Journal compilation © 2011 British Society of Soil Science, European Journal of Soil Science, 62, 617–628


